Paper Reading AI Learner

Orthogonal Convolutional Neural Networks

2019-11-27 15:04:26
Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, Stella X. Yu

Abstract

The instability and feature redundancy in CNNs hinders further performance improvement. Using orthogonality as a regularizer has shown success in alleviating these issues. Previous works however only considered the kernel orthogonality in the convolution layers of CNNs, which is a necessary but not sufficient condition for orthogonal convolutions in general. We propose orthogonal convolutions as regularizations in CNNs and benchmark its effect on various tasks. We observe up to 3% gain for CIFAR100 and up to 1% gain for ImageNet classification. Our experiments also demonstrate improved performance on image retrieval, inpainting and generation, which suggests orthogonal convolution improves the feature expressiveness. Empirically, we show that the uniform spectrum and reduced feature redundancy may account for the gain in performance and robustness under adversarial attacks.

Abstract (translated)

URL

https://arxiv.org/abs/1911.12207

PDF

https://arxiv.org/pdf/1911.12207.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot