Paper Reading AI Learner

Multi-resolution Graph Neural Network for Identifying Disease-specific Variations in Brain Connectivity

2019-12-03 03:46:14
Xin Ma, Guorong Wu, Won Hwa Kim

Abstract

Convolution Neural Network (CNN) recently have been adopted in several neuroimaging studies for diagnosis capturing disease-specific changes in the brain. While many of these methods are designed to work with images in $\mathbb R^n$ exploiting regular structure of the domain, they are not well-suited to analyze data with irregular structure such as brain connectivity. As there is significant interest in understanding the altered interactions between different brain regions that lead to neuro-disorders, it is important to develop data-driven methods that work with a population of graph data for traditional prediction tasks. In this regime, we propose a novel CNN-based framework with adaptive graph transforms to learn the most disease-relevant connectome feature maps which have the highest discrimination power across diagnostic categories. The backbone of our framework is a multi-resolution representation of the graph matrix which is steered by a set of wavelet-like graph transforms. In this context, our supervised graph learning framework outperforms conventional graph methods that predict diagnostic label only based on the underlying individual graph. Our extensive experiments on two real datasets of functional and structural brain networks show that our multi-resolution framework achieves significantly higher accuracy, precision and recall in predicting diagnostic labels and identifying disease-specific brain connectivities that are associated with brain disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD) and Alzheimer's Disease (AD).

Abstract (translated)

URL

https://arxiv.org/abs/1912.01181

PDF

https://arxiv.org/pdf/1912.01181.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot