Paper Reading AI Learner

High-quality Speech Synthesis Using Super-resolution Mel-Spectrogram

2019-12-03 02:53:54
Leyuan Sheng, Dong-Yan Huang, Evgeniy N. Pavlovskiy

Abstract

In speech synthesis and speech enhancement systems, melspectrograms need to be precise in acoustic representations. However, the generated spectrograms are over-smooth, that could not produce high quality synthesized speech. Inspired by image-to-image translation, we address this problem by using a learning-based post filter combining Pix2PixHD and ResUnet to reconstruct the mel-spectrograms together with super-resolution. From the resulting super-resolution spectrogram networks, we can generate enhanced spectrograms to produce high quality synthesized speech. Our proposed model achieves improved mean opinion scores (MOS) of 3.71 and 4.01 over baseline results of 3.29 and 3.84, while using vocoder Griffin-Lim and WaveNet, respectively.

Abstract (translated)

URL

https://arxiv.org/abs/1912.01167

PDF

https://arxiv.org/pdf/1912.01167.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot