Paper Reading AI Learner

Adversarial Pyramid Network for Video Domain Generalization

2019-12-08 17:13:51
Zhiyu Yao, Yunbo Wang, Xingqiang Du, Mingsheng Long, Jianmin Wang

Abstract

This paper introduces a new research problem of video domain generalization (video DG) where most state-of-the-art action recognition networks degenerate due to the lack of exposure to the target domains of divergent distributions. While recent advances in video understanding focus on capturing the temporal relations of the long-term video context, we observe that the global temporal features are less generalizable in the video DG settings. The reason is that videos from other unseen domains may have unexpected absence, misalignment, or scale transformation of the temporal relations, which is known as the temporal domain shift. Therefore, the video DG is even more challenging than the image DG, which is also under-explored, because of the entanglement of the spatial and temporal domain shifts. This finding has led us to view the key to video DG as how to effectively learn the local-relation features of different time scales that are more generalizable, and how to exploit them along with the global-relation features to maintain the discriminability. This paper presents the Adversarial Pyramid Network (APN), which captures the local-relation, global-relation, and multilayer cross-relation features progressively. This pyramid network not only improves the feature transferability from the view of representation learning, but also enhances the diversity and quality of the new data points that can bridge different domains when it is integrated with an improved version of the image DG adversarial data augmentation method. We construct four video DG benchmarks: UCF-HMDB, Something-Something, PKU-MMD, and NTU, in which the source and target domains are divided according to different datasets, different consequences of actions, or different camera views. The APN consistently outperforms previous action recognition models over all benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/1912.03716

PDF

https://arxiv.org/pdf/1912.03716.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot