Paper Reading AI Learner

Environment reconstruction on depth images using Generative Adversarial Networks

2019-12-09 12:18:45
Lucas P. N. Matias, Jefferson R. Souza, Denis F. Wolf

Abstract

Robust perception systems are essential for autonomous vehicle safety. To navigate in a complex urban environment, it is necessary precise sensors with reliable data. The task of understanding the surroundings is hard by itself; for intelligent vehicles, it is even more critical due to the high speed in which the vehicle navigates. To successfully navigate in an urban environment, the perception system must quickly receive, process, and execute an action to guarantee both passenger and pedestrian safety. Stereo cameras collect environment information at many levels, e.g., depth, color, texture, shape, which guarantee ample knowledge about the surroundings. Even so, when compared to human, computational methods lack the ability to deal with missing information, i.e., occlusions. For many perception tasks, this lack of data can be a hindrance due to the environment incomplete information. In this paper, we address this problem and discuss recent methods to deal with occluded areas inference. We then introduce a loss function focused on disparity and environment depth data reconstruction, and a Generative Adversarial Network (GAN) architecture able to deal with occluded information inference. Our results present a coherent reconstruction on depth maps, estimating regions occluded by different obstacles. Our final contribution is a loss function focused on disparity data and a GAN able to extract depth features and estimate depth data by inpainting disparity images.

Abstract (translated)

URL

https://arxiv.org/abs/1912.03992

PDF

https://arxiv.org/pdf/1912.03992.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot