Paper Reading AI Learner

Driver Drowsiness Detection Model Using Convolutional Neural Networks Techniques for Android Application

2020-01-17 12:39:50
Rateb Jabbar, Mohammed Shinoy, Mohamed Kharbeche, Khalifa Al-Khalifa, Moez Krichen, Kamel Barkaoui

Abstract

A sleepy driver is arguably much more dangerous on the road than the one who is speeding as he is a victim of microsleeps. Automotive researchers and manufacturers are trying to curb this problem with several technological solutions that will avert such a crisis. This article focuses on the detection of such micro sleep and drowsiness using neural network based methodologies. Our previous work in this field involved using machine learning with multi-layer perceptron to detect the same. In this paper, accuracy was increased by utilizing facial landmarks which are detected by the camera and that is passed to a Convolutional Neural Network (CNN) to classify drowsiness. The achievement with this work is the capability to provide a lightweight alternative to heavier classification models with more than 88% for the category without glasses, more than 85% for the category night without glasses. On average, more than 83% of accuracy was achieved in all categories. Moreover, as for model size, complexity and storage, there is a marked reduction in the new proposed model in comparison to the benchmark model where the maximum size is 75 KB. The proposed CNN based model can be used to build a real-time driver drowsiness detection system for embedded systems and Android devices with high accuracy and ease of use.

Abstract (translated)

URL

https://arxiv.org/abs/2002.03728

PDF

https://arxiv.org/pdf/2002.03728.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot