Paper Reading AI Learner

Boosted Locality Sensitive Hashing: Discriminative Binary Codes for Source Separation

2020-02-14 20:10:00
Sunwoo Kim, Haici Yang, Minje Kim

Abstract

Speech enhancement tasks have seen significant improvements with the advance of deep learning technology, but with the cost of increased computational complexity. In this study, we propose an adaptive boosting approach to learning locality sensitive hash codes, which represent audio spectra efficiently. We use the learned hash codes for single-channel speech denoising tasks as an alternative to a complex machine learning model, particularly to address the resource-constrained environments. Our adaptive boosting algorithm learns simple logistic regressors as the weak learners. Once trained, their binary classification results transform each spectrum of test noisy speech into a bit string. Simple bitwise operations calculate Hamming distance to find the K-nearest matching frames in the dictionary of training noisy speech spectra, whose associated ideal binary masks are averaged to estimate the denoising mask for that test mixture. Our proposed learning algorithm differs from AdaBoost in the sense that the projections are trained to minimize the distances between the self-similarity matrix of the hash codes and that of the original spectra, rather than the misclassification rate. We evaluate our discriminative hash codes on the TIMIT corpus with various noise types, and show comparative performance to deep learning methods in terms of denoising performance and complexity.

Abstract (translated)

URL

https://arxiv.org/abs/2002.06239

PDF

https://arxiv.org/pdf/2002.06239.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot