Paper Reading AI Learner

Acoustic Scene Classification Using Bilinear Pooling on Time-liked and Frequency-liked Convolution Neural Network

2020-02-14 04:06:32
Xing Yong Kek, Cheng Siong Chin, Ye Li

Abstract

The current methodology in tackling Acoustic Scene Classification (ASC) task can be described in two steps, preprocessing of the audio waveform into log-mel spectrogram and then using it as the input representation for Convolutional Neural Network (CNN). This paradigm shift occurs after DCASE 2016 where this framework model achieves the state-of-the-art result in ASC tasks on the (ESC-50) dataset and achieved an accuracy of 64.5%, which constitute to 20.5% improvement over the baseline model, and DCASE 2016 dataset with an accuracy of 90.0% (development) and 86.2% (evaluation), which constitute a 6.4% and 9% improvements with respect to the baseline system. In this paper, we explored the use of harmonic and percussive source separation (HPSS) to split the audio into harmonic audio and percussive audio, which has received popularity in the field of music information retrieval (MIR). Although works have been done in using HPSS as input representation for CNN model in ASC task, this paper further investigate the possibility on leveraging the separated harmonic component and percussive component by curating 2 CNNs which tries to understand harmonic audio and percussive audio in their natural form, one specialized in extracting deep features in time biased domain and another specialized in extracting deep features in frequency biased domain, respectively. The deep features extracted from these 2 CNNs will then be combined using bilinear pooling. Hence, presenting a two-stream time and frequency CNN architecture approach in classifying acoustic scene. The model is being evaluated on DCASE 2019 sub task 1a dataset and scored an average of 65% on development dataset, Kaggle Leadership Private and Public board.

Abstract (translated)

URL

https://arxiv.org/abs/2002.07065

PDF

https://arxiv.org/pdf/2002.07065.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot