Paper Reading AI Learner

A neural network model of perception and reasoning

2020-02-26 06:26:04
Paul J. Blazek, Milo M. Lin

Abstract

How perception and reasoning arise from neuronal network activity is poorly understood. This is reflected in the fundamental limitations of connectionist artificial intelligence, typified by deep neural networks trained via gradient-based optimization. Despite success on many tasks, such networks remain unexplainable black boxes incapable of symbolic reasoning and concept generalization. Here we show that a simple set of biologically consistent organizing principles confer these capabilities to neuronal networks. To demonstrate, we implement these principles in a novel machine learning algorithm, based on concept construction instead of optimization, to design deep neural networks that reason with explainable neuron activity. On a range of tasks including NP-hard problems, their reasoning capabilities grant additional cognitive functions, like deliberating through self-analysis, tolerating adversarial attacks, and learning transferable rules from simple examples to solve problems of unencountered complexity. The networks also naturally display properties of biological nervous systems inherently absent in current deep neural networks, including sparsity, modularity, and both distributed and localized firing patterns. Because they do not sacrifice performance, compactness, or training time on standard learning tasks, these networks provide a new black-box-free approach to artificial intelligence. They likewise serve as a quantitative framework to understand the emergence of cognition from neuronal networks.

Abstract (translated)

URL

https://arxiv.org/abs/2002.11319

PDF

https://arxiv.org/pdf/2002.11319.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot