Paper Reading AI Learner

Learning for Video Compression with Hierarchical Quality and Recurrent Enhancement

2020-03-04 09:31:37
Ren Yang, Fabian Mentzer, Luc Van Gool, Radu Timofte

Abstract

The recent years have witnessed the great potential of deep learning for video compression. In this paper, we propose the Hierarchical Learned Video Compression (HLVC) approach with three hierarchical quality layers and recurrent enhancement. To be specific, the frames in the first layer are compressed by image compression method with the highest quality. Using them as references, we propose the Bi-Directional Deep Compression (BDDC) network to compress the second layer with relatively high quality. Then, the third layer frames are compressed with the lowest quality, by the proposed Single Motion Deep Compression (SMDC) network, which adopts a single motion map to estimate the motions of multiple frames, thus saving the bit-rate for motion information. In our deep decoder, we develop the Weighted Recurrent Quality Enhancement (WRQE) network with the inputs of both compressed frames and bit stream. In the recurrent cell of WRQE, the memory and update signal are weighted by quality features to reasonably leverage multi-frame information for enhancement. In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides, respectively. Finally, the experiments validate that our HLVC approach advances the state-of-the-art deep video compression methods, and outperforms x265 low delay P very fast mode in terms of both PSNR and MS-SSIM. The project page is at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2003.01966

PDF

https://arxiv.org/pdf/2003.01966.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot