Paper Reading AI Learner

End-to-End Neural Diarization: Reformulating Speaker Diarization as Simple Multi-label Classification

2020-02-24 14:53:32
Yusuke Fujita, Shinji Watanabe, Shota Horiguchi, Yawen Xue, Kenji Nagamatsu

Abstract

The most common approach to speaker diarization is clustering of speaker embeddings. However, the clustering-based approach has a number of problems; i.e., (i) it is not optimized to minimize diarization errors directly, (ii) it cannot handle speaker overlaps correctly, and (iii) it has trouble adapting their speaker embedding models to real audio recordings with speaker overlaps. To solve these problems, we propose the End-to-End Neural Diarization (EEND), in which a neural network directly outputs speaker diarization results given a multi-speaker recording. To realize such an end-to-end model, we formulate the speaker diarization problem as a multi-label classification problem and introduce a permutation-free objective function to directly minimize diarization errors. Besides its end-to-end simplicity, the EEND method can explicitly handle speaker overlaps during training and inference. Just by feeding multi-speaker recordings with corresponding speaker segment labels, our model can be easily adapted to real conversations. We evaluated our method on simulated speech mixtures and real conversation datasets. The results showed that the EEND method outperformed the state-of-the-art x-vector clustering-based method, while it correctly handled speaker overlaps. We explored the neural network architecture for the EEND method, and found that the self-attention-based neural network was the key to achieving excellent performance. In contrast to conditioning the network only on its previous and next hidden states, as is done using bidirectional long short-term memory (BLSTM), self-attention is directly conditioned on all the frames. By visualizing the attention weights, we show that self-attention captures global speaker characteristics in addition to local speech activity dynamics, making it especially suitable for dealing with the speaker diarization problem.

Abstract (translated)

URL

https://arxiv.org/abs/2003.02966

PDF

https://arxiv.org/pdf/2003.02966.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot