Paper Reading AI Learner

Neural encoding and interpretation for high-level visual cortices based on fMRI using image caption features

2020-03-26 08:47:21
Kai Qiao, Chi Zhang, Jian Chen, Linyuan Wang, Li Tong, Bin Yan

Abstract

On basis of functional magnetic resonance imaging (fMRI), researchers are devoted to designing visual encoding models to predict the neuron activity of human in response to presented image stimuli and analyze inner mechanism of human visual cortices. Deep network structure composed of hierarchical processing layers forms deep network models by learning features of data on specific task through big dataset. Deep network models have powerful and hierarchical representation of data, and have brought about breakthroughs for visual encoding, while revealing hierarchical structural similarity with the manner of information processing in human visual cortices. However, previous studies almost used image features of those deep network models pre-trained on classification task to construct visual encoding models. Except for deep network structure, the task or corresponding big dataset is also important for deep network models, but neglected by previous studies. Because image classification is a relatively fundamental task, it is difficult to guide deep network models to master high-level semantic representations of data, which causes into that encoding performance for high-level visual cortices is limited. In this study, we introduced one higher-level vision task: image caption (IC) task and proposed the visual encoding model based on IC features (ICFVEM) to encode voxels of high-level visual cortices. Experiment demonstrated that ICFVEM obtained better encoding performance than previous deep network models pre-trained on classification task. In addition, the interpretation of voxels was realized to explore the detailed characteristics of voxels based on the visualization of semantic words, and comparative analysis implied that high-level visual cortices behaved the correlative representation of image content.

Abstract (translated)

URL

https://arxiv.org/abs/2003.11797

PDF

https://arxiv.org/pdf/2003.11797.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot