Paper Reading AI Learner

AR: Auto-Repair the Synthetic Data for Neural Machine Translation

2020-04-05 13:18:18
Shanbo Cheng, Shaohui Kuang, Rongxiang Weng, Heng Yu, Changfeng Zhu, Weihua Luo
     

Abstract

Compared with only using limited authentic parallel data as training corpus, many studies have proved that incorporating synthetic parallel data, which generated by back translation (BT) or forward translation (FT, or selftraining), into the NMT training process can significantly improve translation quality. However, as a well-known shortcoming, synthetic parallel data is noisy because they are generated by an imperfect NMT system. As a result, the improvements in translation quality bring by the synthetic parallel data are greatly diminished. In this paper, we propose a novel Auto- Repair (AR) framework to improve the quality of synthetic data. Our proposed AR model can learn the transformation from low quality (noisy) input sentence to high quality sentence based on large scale monolingual data with BT and FT techniques. The noise in synthetic parallel data will be sufficiently eliminated by the proposed AR model and then the repaired synthetic parallel data can help the NMT models to achieve larger improvements. Experimental results show that our approach can effective improve the quality of synthetic parallel data and the NMT model with the repaired synthetic data achieves consistent improvements on both WMT14 EN!DE and IWSLT14 DE!EN translation tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2004.02196

PDF

https://arxiv.org/pdf/2004.02196.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot