Paper Reading AI Learner

Unsupervised Few-shot Learning via Distribution Shift-based Augmentation

2020-04-13 07:41:56
Tiexin Qin, Wenbin Li, Yinghuan Shi, Yang Gao

Abstract

Few-shot learning aims to learn a new concept when only a few training examples are available, which has been extensively explored in recent years. However, most of the current works heavily rely on a large-scale labeled auxiliary set to train their models in an episodic-training paradigm. Such a kind of supervised setting basically limits the widespread use of few-shot learning algorithms, especially in real-world applications. Instead, in this paper, we develop a novel framework called \emph{Unsupervised Few-shot Learning via Distribution Shift-based Data Augmentation} (ULDA), which pays attention to the distribution diversity inside each constructed pretext few-shot task when using data augmentation. Importantly, we highlight the value and importance of the distribution diversity in the augmentation-based pretext few-shot tasks. In ULDA, we systemically investigate the effects of different augmentation techniques and propose to strengthen the distribution diversity (or difference) between the query set and support set in each few-shot task, by augmenting these two sets separately (i.e. shifting). In this way, even incorporated with simple augmentation techniques (e.g. random crop, color jittering, or rotation), our ULDA can produce a significant improvement. In the experiments, few-shot models learned by ULDA can achieve superior generalization performance and obtain state-of-the-art results in a variety of established few-shot learning tasks on \emph{mini}ImageNet and \emph{tiered}ImageNet. %The code will be released soon. The source code is available in \textcolor{blue}{\emph{this https URL}}.

Abstract (translated)

URL

https://arxiv.org/abs/2004.05805

PDF

https://arxiv.org/pdf/2004.05805.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot