Paper Reading AI Learner

The Notorious Difficulty of Comparing Human and Machine Perception

2020-04-20 16:05:36
Christina M. Funke, Judy Borowski, Karolina Stosio, Wieland Brendel, Thomas S. A. Wallis, Matthias Bethge

Abstract

With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These works have the potential to deepen our understanding of the inner mechanisms of human perception and to improve machine learning. Drawing robust conclusions from comparison studies, however, turns out to be difficult. Here, we highlight common shortcomings that can easily lead to fragile conclusions. First, if a model does achieve high performance on a task similar to humans, its decision-making process is not necessarily human-like. Moreover, further analyses can reveal differences. Second, the performance of neural networks is sensitive to training procedures and architectural details. Thus, generalizing conclusions from specific architectures is difficult. Finally, when comparing humans and machines, equivalent experimental settings are crucial in order to identify innate differences. Addressing these shortcomings alters or refines the conclusions of studies. We show that, despite their ability to solve closed-contour tasks, our neural networks use different decision-making strategies than humans. We further show that there is no fundamental difference between same-different and spatial tasks for common feed-forward neural networks and finally, that neural networks do experience a "recognition gap" on minimal recognizable images. All in all, care has to be taken to not impose our human systematic bias when comparing human and machine perception.

Abstract (translated)

URL

https://arxiv.org/abs/2004.09406

PDF

https://arxiv.org/pdf/2004.09406.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot