Paper Reading AI Learner

Rolling-Unrolling LSTMs for Action Anticipation from First-Person Video

2020-05-04 14:13:41
Antonino Furnari, Giovanni Maria Farinella

Abstract

In this paper, we tackle the problem of egocentric action anticipation, i.e., predicting what actions the camera wearer will perform in the near future and which objects they will interact with. Specifically, we contribute Rolling-Unrolling LSTM, a learning architecture to anticipate actions from egocentric videos. The method is based on three components: 1) an architecture comprised of two LSTMs to model the sub-tasks of summarizing the past and inferring the future, 2) a Sequence Completion Pre-Training technique which encourages the LSTMs to focus on the different sub-tasks, and 3) a Modality ATTention (MATT) mechanism to efficiently fuse multi-modal predictions performed by processing RGB frames, optical flow fields and object-based features. The proposed approach is validated on EPIC-Kitchens, EGTEA Gaze+ and ActivityNet. The experiments show that the proposed architecture is state-of-the-art in the domain of egocentric videos, achieving top performances in the 2019 EPIC-Kitchens egocentric action anticipation challenge. The approach also achieves competitive performance on ActivityNet with respect to methods not based on unsupervised pre-training and generalizes to the tasks of early action recognition and action recognition. To encourage research on this challenging topic, we made our code, trained models, and pre-extracted features available at our web page: this http URL.

Abstract (translated)

URL

https://arxiv.org/abs/2005.02190

PDF

https://arxiv.org/pdf/2005.02190.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot