Paper Reading AI Learner

A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Color and Multiphase Image Segmentation

2020-05-09 09:35:44
Kevin Bui, Fredrick Park, Yifei Lou, Jack Xin

Abstract

In a class of piecewise-constant image segmentation models, we incorporate a weighted difference of anisotropic and isotropic total variation (TV) to regularize the partition boundaries in an image. To deal with the weighted anisotropic-isotropic TV, we apply the difference-of-convex algorithm (DCA), where the subproblems can be minimized by the primal-dual hybrid gradient method (PDHG). As a result, we are able to design an alternating minimization algorithm to solve the proposed image segmentation models. The models and algorithms are further extended to segment color images and to perform multiphase segmentation. In the numerical experiments, we compare our proposed models with the Chan-Vese models that use either anisotropic or isotropic TV and the two-stage segmentation methods (denoising and then thresholding) on various images. The results demonstrate the effectiveness and robustness of incorporating weighted anisotropic-isotropic TV in image segmentation.

Abstract (translated)

URL

https://arxiv.org/abs/2005.04401

PDF

https://arxiv.org/pdf/2005.04401.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot