Paper Reading AI Learner

Improved Flight Time Predictions for Fuel Loading Decisions of Scheduled Flights with a Deep Learning Approach

2020-05-12 11:05:42
Xinting Zhu, Lishuai Li

Abstract

Under increasing economic and environmental pressure, airlines are constantly seeking new technologies and optimizing flight operations to reduce fuel consumption. However, the current policy on fuel loading, which has a significant impact on aircraft weight, leaves room for improvement. Excess fuel is loaded by dispatchers and(or) pilots to ensure safety because of fuel consumption uncertainties, primarily caused by flight time uncertainties, which cannot be predicted by current Flight Planning Systems (FPS). In this paper, we develop a novel spatial weighted recurrent neural network model to provide better flight time predictions by capturing air traffic information at a national scale based on multiple data sources, including Automatic Dependent Surveillance - Broadcast, Meteorological Airdrome Reports, and airline records. In this model, we adopt recurrent neural network layers to extract spatiotemporal correlations between features utilizing the repetitive traffic patterns and interacting elements in aviation traffic networks. A spatial weighted layer is introduced to learn origin-destination (OD) specific features, and a two-step training procedure is introduced to integrate individual OD models into one model for a national air traffic network. This model was trained and tested using one year of historical data from real operations. Results show that our model can provide a more accurate flight time predictions than the FPS and the LASSO methods, especially for flights with extreme delays. We also show that with the improved flight time prediction, fuel loading can be optimized to reduce fuel consumption by 0.83% for an example airline's fleet without increasing the fuel depletion risk.

Abstract (translated)

URL

https://arxiv.org/abs/2005.05684

PDF

https://arxiv.org/pdf/2005.05684.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot