Paper Reading AI Learner

TCDesc: Learning Topology Consistent Descriptors

2020-06-05 06:46:30
Honghu Pan, Fanyang Meng, Zhenyu He, Yongsheng Liang, Wei Liu

Abstract

Triplet loss is widely used for learning local descriptors from image patch. However, triplet loss only minimizes the Euclidean distance between matching descriptors and maximizes that between the non-matching descriptors, which neglects the topology similarity between two descriptor sets. In this paper, we propose topology measure besides Euclidean distance to learn topology consistent descriptors by considering kNN descriptors of positive sample. First we establish a novel topology vector for each descriptor followed by Locally Linear Embedding (LLE) to indicate the topological relation among the descriptor and its kNN descriptors. Then we define topology distance between descriptors as the difference of their topology vectors. Last we employ the dynamic weighting strategy to fuse Euclidean distance and topology distance of matching descriptors and take the fusion result as the positive sample distance in the triplet loss. Experimental results on several benchmarks show that our method performs better than state-of-the-arts results and effectively improves the performance of triplet loss.

Abstract (translated)

URL

https://arxiv.org/abs/2006.03254

PDF

https://arxiv.org/pdf/2006.03254.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot