Paper Reading AI Learner

Semantic Loss Application to Entity Relation Recognition

2020-06-07 03:12:38
Venkata Sasank Pagolu

Abstract

Usually, entity relation recognition systems either use a pipe-lined model that treats the entity tagging and relation identification as separate tasks or a joint model that simultaneously identifies the relation and entities. This paper compares these two general approaches for the entity relation recognition. State-of-the-art entity relation recognition systems are built using deep recurrent neural networks which often does not capture the symbolic knowledge or the logical constraints in the problem. The main contribution of this paper is an end-to-end neural model for joint entity relation extraction which incorporates a novel loss function. This novel loss function encodes the constraint information in the problem to guide the model training effectively. We show that addition of this loss function to the existing typical loss functions has a positive impact over the performance of the models. This model is truly end-to-end, requires no feature engineering and easily extensible. Extensive experimentation has been conducted to evaluate the significance of capturing symbolic knowledge for natural language understanding. Models using this loss function are observed to be outperforming their counterparts and converging faster. Experimental results in this work suggest the use of this methodology for other language understanding applications.

Abstract (translated)

URL

https://arxiv.org/abs/2006.04031

PDF

https://arxiv.org/pdf/2006.04031.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot