Paper Reading AI Learner

On sparse connectivity, adversarial robustness, and a novel model of the artificial neuron

2020-06-16 20:45:08
Sergey Bochkanov

Abstract

Deep neural networks have achieved human-level accuracy on almost all perceptual benchmarks. It is interesting that these advances were made using two ideas that are decades old: (a) an artificial neuron based on a linear summator and (b) SGD training. However, there are important metrics beyond accuracy: computational efficiency and stability against adversarial perturbations. In this paper, we propose two closely connected methods to improve these metrics on contour recognition tasks: (a) a novel model of an artificial neuron, a "strong neuron," with low hardware requirements and inherent robustness against adversarial perturbations and (b) a novel constructive training algorithm that generates sparse networks with $O(1)$ connections per neuron. We demonstrate the feasibility of our approach through experiments on SVHN and GTSRB benchmarks. We achieved an impressive 10x-100x reduction in operations count (10x when compared with other sparsification approaches, 100x when compared with dense networks) and a substantial reduction in hardware requirements (8-bit fixed-point math was used) with no reduction in model accuracy. Superior stability against adversarial perturbations (exceeding that of adversarial training) was achieved without any counteradversarial measures, relying on the robustness of strong neurons alone. We also proved that constituent blocks of our strong neuron are the only activation functions with perfect stability against adversarial attacks.

Abstract (translated)

URL

https://arxiv.org/abs/2006.09510

PDF

https://arxiv.org/pdf/2006.09510.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot