Paper Reading AI Learner

Image Sentiment Transfer

2020-06-19 19:28:08
Tianlang Chen, Wei Xiong, Haitian Zheng, Jiebo Luo

Abstract

In this work, we introduce an important but still unexplored research task -- image sentiment transfer. Compared with other related tasks that have been well-studied, such as image-to-image translation and image style transfer, transferring the sentiment of an image is more challenging. Given an input image, the rule to transfer the sentiment of each contained object can be completely different, making existing approaches that perform global image transfer by a single reference image inadequate to achieve satisfactory performance. In this paper, we propose an effective and flexible framework that performs image sentiment transfer at the object level. It first detects the objects and extracts their pixel-level masks, and then performs object-level sentiment transfer guided by multiple reference images for the corresponding objects. For the core object-level sentiment transfer, we propose a novel Sentiment-aware GAN (SentiGAN). Both global image-level and local object-level supervisions are imposed to train SentiGAN. More importantly, an effective content disentanglement loss cooperating with a content alignment step is applied to better disentangle the residual sentiment-related information of the input image. Extensive quantitative and qualitative experiments are performed on the object-oriented VSO dataset we create, demonstrating the effectiveness of the proposed framework.

Abstract (translated)

URL

https://arxiv.org/abs/2006.11337

PDF

https://arxiv.org/pdf/2006.11337.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot