Paper Reading AI Learner

MTStereo 2.0: improved accuracy of stereo depth estimation withMax-trees

2020-06-27 14:33:04
Rafael Brandt, Nicola Strisciuglio, Nicolai Petkov

Abstract

Efficient yet accurate extraction of depth from stereo image pairs is required by systems with low power resources, such as robotics and embedded systems. State-of-the-art stereo matching methods based on convolutional neural networks require intensive computations on GPUs and are difficult to deploy on embedded systems. In this paper, we propose a stereo matching method, called MTStereo 2.0, for limited-resource systems that require efficient and accurate depth estimation. It is based on a Max-tree hierarchical representation of image pairs, which we use to identify matching regions along image scan-lines. The method includes a cost function that considers similarity of region contextual information based on the Max-trees and a disparity border preserving cost aggregation approach. MTStereo 2.0 improves on its predecessor MTStereo 1.0 as it a) deploys a more robust cost function, b) performs more thorough detection of incorrect matches, c) computes disparity maps with pixel-level rather than node-level precision. MTStereo provides accurate sparse and semi-dense depth estimation and does not require intensive GPU computations like methods based on CNNs. Thus it can run on embedded and robotics devices with low-power requirements. We tested the proposed approach on several benchmark data sets, namely KITTI 2015, Driving, FlyingThings3D, Middlebury 2014, Monkaa and the TrimBot2020 garden data sets, and achieved competitive accuracy and efficiency. The code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2006.15373

PDF

https://arxiv.org/pdf/2006.15373.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot