Paper Reading AI Learner

Dynamic Sampling Networks for Efficient Action Recognition in Videos

2020-06-28 09:48:29
Yin-Dong Zheng, Zhaoyang Liu, Tong Lu, Limin Wang

Abstract

The existing action recognition methods are mainly based on clip-level classifiers such as two-stream CNNs or 3D CNNs, which are trained from the randomly selected clips and applied to densely sampled clips during testing. However, this standard setting might be suboptimal for training classifiers and also requires huge computational overhead when deployed in practice. To address these issues, we propose a new framework for action recognition in videos, called {\em Dynamic Sampling Networks} (DSN), by designing a dynamic sampling module to improve the discriminative power of learned clip-level classifiers and as well increase the inference efficiency during testing. Specifically, DSN is composed of a sampling module and a classification module, whose objective is to learn a sampling policy to on-the-fly select which clips to keep and train a clip-level classifier to perform action recognition based on these selected clips, respectively. In particular, given an input video, we train an observation network in an associative reinforcement learning setting to maximize the rewards of the selected clips with a correct prediction. We perform extensive experiments to study different aspects of the DSN framework on four action recognition datasets: UCF101, HMDB51, THUMOS14, and ActivityNet v1.3. The experimental results demonstrate that DSN is able to greatly improve the inference efficiency by only using less than half of the clips, which can still obtain a slightly better or comparable recognition accuracy to the state-of-the-art approaches.

Abstract (translated)

URL

https://arxiv.org/abs/2006.15560

PDF

https://arxiv.org/pdf/2006.15560.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot