Paper Reading AI Learner

Analogical Image Translation for Fog Generation

2020-06-28 14:33:31
Rui Gong, Dengxin Dai, Yuhua Chen, Wen Li, Luc Van Gool

Abstract

Image-to-image translation is to map images from a given \emph{style} to another given \emph{style}. While exceptionally successful, current methods assume the availability of training images in both source and target domains, which does not always hold in practice. Inspired by humans' reasoning capability of analogy, we propose analogical image translation (AIT). Given images of two styles in the source domain: $\mathcal{A}$ and $\mathcal{A}^\prime$, along with images $\mathcal{B}$ of the first style in the target domain, learn a model to translate $\mathcal{B}$ to $\mathcal{B}^\prime$ in the target domain, such that $\mathcal{A}:\mathcal{A}^\prime ::\mathcal{B}:\mathcal{B}^\prime$. AIT is especially useful for translation scenarios in which training data of one style is hard to obtain but training data of the same two styles in another domain is available. For instance, in the case from normal conditions to extreme, rare conditions, obtaining real training images for the latter case is challenging but obtaining synthetic data for both cases is relatively easy. In this work, we are interested in adding adverse weather effects, more specifically fog effects, to images taken in clear weather. To circumvent the challenge of collecting real foggy images, AIT learns with synthetic clear-weather images, synthetic foggy images and real clear-weather images to add fog effects onto real clear-weather images without seeing any real foggy images during training. AIT achieves this zero-shot image translation capability by coupling a supervised training scheme in the synthetic domain, a cycle consistency strategy in the real domain, an adversarial training scheme between the two domains, and a novel network design. Experiments show the effectiveness of our method for zero-short image translation and its benefit for downstream tasks such as semantic foggy scene understanding.

Abstract (translated)

URL

https://arxiv.org/abs/2006.15618

PDF

https://arxiv.org/pdf/2006.15618.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot