Paper Reading AI Learner

A Framework for Learning Invariant Physical Relations in Multimodal Sensory Processing

2020-06-30 08:42:48
Du Xiaorui, Yavuzhan Erdem, Immanuel Schweizer, Cristian Axenie

Abstract

Perceptual learning enables humans to recognize and represent stimuli invariant to various transformations and build a consistent representation of the self and physical world. Such representations preserve the invariant physical relations among the multiple perceived sensory cues. This work is an attempt to exploit these principles in an engineered system. We design a novel neural network architecture capable of learning, in an unsupervised manner, relations among multiple sensory cues. The system combines computational principles, such as competition, cooperation, and correlation, in a neurally plausible computational substrate. It achieves that through a parallel and distributed processing architecture in which the relations among the multiple sensory quantities are extracted from time-sequenced data. We describe the core system functionality when learning arbitrary non-linear relations in low-dimensional sensory data. Here, an initial benefit rises from the fact that such a network can be engineered in a relatively straightforward way without prior information about the sensors and their interactions. Moreover, alleviating the need for tedious modelling and parametrization, the network converges to a consistent description of any arbitrary high-dimensional multisensory setup. We demonstrate this through a real-world learning problem, where, from standard RGB camera frames, the network learns the relations between physical quantities such as light intensity, spatial gradient, and optical flow, describing a visual scene. Overall, the benefits of such a framework lie in the capability to learn non-linear pairwise relations among sensory streams in an architecture that is stable under noise and missing sensor input.

Abstract (translated)

URL

https://arxiv.org/abs/2006.16607

PDF

https://arxiv.org/pdf/2006.16607.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot