Paper Reading AI Learner

Detail Preserved Point Cloud Completion via Separated Feature Aggregation

2020-07-05 16:11:55
Wenxiao Zhang, Qingan Yan, Chunxia Xiao


tract: Point cloud shape completion is a challenging problem in 3D vision and robotics. Existing learning-based frameworks leverage encoder-decoder architectures to recover the complete shape from a highly encoded global feature vector. Though the global feature can approximately represent the overall shape of 3D objects, it would lead to the loss of shape details during the completion process. In this work, instead of using a global feature to recover the whole complete surface, we explore the functionality of multi-level features and aggregate different features to represent the known part and the missing part separately. We propose two different feature aggregation strategies, named global \& local feature aggregation(GLFA) and residual feature aggregation(RFA), to express the two kinds of features and reconstruct coordinates from their combination. In addition, we also design a refinement component to prevent the generated point cloud from non-uniform distribution and outliers. Extensive experiments have been conducted on the ShapeNet dataset. Qualitative and quantitative evaluations demonstrate that our proposed network outperforms current state-of-the art methods especially on detail preservation.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot