Paper Reading AI Learner

FC2RN: A Fully Convolutional Corner Refinement Network for Accurate Multi-Oriented Scene Text Detection

2020-07-10 00:04:24
Xugong Qin, Yu Zhou, Dayan Wu, Yinliang Yue, Weiping Wang

Abstract

Recent scene text detection works mainly focus on curve text detection. However, in real applications, the curve texts are more scarce than the multi-oriented ones. Accurate detection of multi-oriented text with large variations of scales, orientations, and aspect ratios is of great significance. Among the multi-oriented detection methods, direct regression for the geometry of scene text shares a simple yet powerful pipeline and gets popular in academic and industrial communities, but it may produce imperfect detections, especially for long texts due to the limitation of the receptive field. In this work, we aim to improve this while keeping the pipeline simple. A fully convolutional corner refinement network (FC2RN) is proposed for accurate multi-oriented text detection, in which an initial corner prediction and a refined corner prediction are obtained at one pass. With a novel quadrilateral RoI convolution operation tailed for multi-oriented scene text, the initial quadrilateral prediction is encoded into the feature maps which can be further used to predict offset between the initial prediction and the ground-truth as well as output a refined confidence score. Experimental results on four public datasets including MSRA-TD500, ICDAR2017-RCTW, ICDAR2015, and COCO-Text demonstrate that FC2RN can outperform the state-of-the-art methods. The ablation study shows the effectiveness of corner refinement and scoring for accurate text localization.

Abstract (translated)

URL

https://arxiv.org/abs/2007.05113

PDF

https://arxiv.org/pdf/2007.05113.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot