Paper Reading AI Learner

How to trust unlabeled data? Instance Credibility Inference for Few-Shot Learning

2020-07-15 03:38:09
Yikai Wang, Li Zhang, Yuan Yao, Yanwei Fu

Abstract

Deep learning based models have excelled in many computer vision task and appear to surpass humans performance. However, these models require an avalanche of expensive human labeled training data and many iterations to train their large number of parameters. This severely limits their scalability to the real-world long-tail distributed categories. Learning from such extremely limited labeled examples is known as Few-shot learning. Different to prior arts that leverage meta-learning or data augmentation strategies to alleviate this extremely data-scarce problem, this paper presents a statistical approach, dubbed Instance Credibility Inference to exploit the support of unlabeled instances for few-shot visual recognition. Typically, we repurpose the self-taught learning paradigm. To do so, we construct a (Generalized) Linear Model (LM/GLM) with incidental parameters to model the mapping from (un-)labeled features to their (pseudo-)labels, in which the sparsity of the incidental parameters indicates the credibility of corresponding pseudo-labeled instance. We rank the credibility of pseudo-labels of unlabeled instances along the regularization path of their corresponding incidental parameters, and the most trustworthy pseudo-labeled examples are preserved as the augmented labeled instances.This process is repeated until all the unlabeled samples are iteratively included in the expanded training set. Theoretically, under mild conditions of restricted eigenvalue, irrepresentability, and large error, our approach is guaranteed to collect all the correctly-predicted pseudo-labeled instances from the noisy pseudo-labeled set. Extensive experiments under two few-shot settings show that our approach can establish new state of the art on four widely used few-shot visual recognition benchmark datasets including miniImageNet, tieredImageNet, CIFAR-FS, and CUB.

Abstract (translated)

URL

https://arxiv.org/abs/2007.08461

PDF

https://arxiv.org/pdf/2007.08461.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot