Paper Reading AI Learner

D2D: Learning to find good correspondences for image matching and manipulation

2020-07-16 17:32:00
Olivia Wiles, Sebastien Ehrhardt, Andrew Zisserman

Abstract

We propose a new approach to determining correspondences between image pairs under large changes in illumination, viewpoint, context, and material. While most approaches seek to extract a set of reliably detectable regions in each image which are then compared (sparse-to-sparse) using increasingly complicated or specialized pipelines, we propose a simple approach for matching all points between the images (dense-to-dense) and subsequently selecting the best matches. The two key parts of our approach are: (i) to condition the learned features on both images, and (ii) to learn a distinctiveness score which is used to choose the best matches at test time. We demonstrate that our model can be used to achieve state of the art or competitive results on a wide range of tasks: local matching, camera localization, 3D reconstruction, and image stylization.

Abstract (translated)

URL

https://arxiv.org/abs/2007.08480

PDF

https://arxiv.org/pdf/2007.08480.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot