Paper Reading AI Learner

Detecting Deepfake Videos: An Analysis of Three Techniques

2020-07-15 20:36:23
Armaan Pishori, Brittany Rollins, Nicolas van Houten, Nisha Chatwani, Omar Uraimov


tract: Recent advances in deepfake generating algorithms that produce manipulated media have had dangerous implications in privacy, security and mass communication. Efforts to combat this issue have risen in the form of competitions and funding for research to detect deepfakes. This paper presents three techniques and algorithms: convolutional LSTM, eye blink detection and grayscale histograms-pursued while participating in the Deepfake Detection Challenge. We assessed the current knowledge about deepfake videos, a more severe version of manipulated media, and previous methods used, and found relevance in the grayscale histogram technique over others. We discussed the implications of each method developed and provided further steps to improve the given findings.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot