Paper Reading AI Learner

Improving Optical Flow on a Pyramid Level

2020-07-18 12:31:56
Markus Hofinger, Samuel Rota Bulò, Lorenzo Porzi, Arno Knapitsch, Thomas Pock, Peter Kontschieder

Abstract

In this work we review the coarse-to-fine spatial feature pyramid concept, which is used in state-of-the-art optical flow estimation networks to make exploration of the pixel flow search space computationally tractable and efficient. Within an individual pyramid level, we improve the cost volume construction process by departing from a warping- to a sampling-based strategy, which avoids ghosting and hence enables us to better preserve fine flow details. We further amplify the positive effects through a level-specific, loss max-pooling strategy that adaptively shifts the focus of the learning process on under-performing predictions. Our second contribution revises the gradient flow across pyramid levels. The typical operations performed at each pyramid level can lead to noisy, or even contradicting gradients across levels. We show and discuss how properly blocking some of these gradient components leads to improved convergence and ultimately better performance. Finally, we introduce a distillation concept to counteract the issue of catastrophic forgetting and thus preserving knowledge over models sequentially trained on multiple datasets. Our findings are conceptually simple and easy to implement, yet result in compelling improvements on relevant error measures that we demonstrate via exhaustive ablations on datasets like Flying Chairs2, Flying Things, Sintel and KITTI. We establish new state-of-the-art results on the challenging Sintel and KITTI 2012 test datasets, and even show the portability of our findings to different optical flow and depth from stereo approaches.

Abstract (translated)

URL

https://arxiv.org/abs/1912.10739

PDF

https://arxiv.org/pdf/1912.10739.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot