Paper Reading AI Learner

Leveraging Bottom-Up and Top-Down Attention for Few-Shot Object Detection

2020-07-23 16:12:04
Xianyu Chen, Ming Jiang, Qi Zhao

Abstract

Few-shot object detection aims at detecting objects with few annotated examples, which remains a challenging research problem yet to be explored. Recent studies have shown the effectiveness of self-learned top-down attention mechanisms in object detection and other vision tasks. The top-down attention, however, is less effective at improving the performance of few-shot detectors. Due to the insufficient training data, object detectors cannot effectively generate attention maps for few-shot examples. To improve the performance and interpretability of few-shot object detectors, we propose an attentive few-shot object detection network (AttFDNet) that takes the advantages of both top-down and bottom-up attention. Being task-agnostic, the bottom-up attention serves as a prior that helps detect and localize naturally salient objects. We further address specific challenges in few-shot object detection by introducing two novel loss terms and a hybrid few-shot learning strategy. Experimental results and visualization demonstrate the complementary nature of the two types of attention and their roles in few-shot object detection. Codes are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2007.12104

PDF

https://arxiv.org/pdf/2007.12104.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot