Paper Reading AI Learner

Learning from Scale-Invariant Examples for Domain Adaptation in Semantic Segmentation

2020-07-28 19:40:45
M.Naseer Subhani, Mohsen Ali

Abstract

Self-supervised learning approaches for unsupervised domain adaptation (UDA) of semantic segmentation models suffer from challenges of predicting and selecting reasonable good quality pseudo labels. In this paper, we propose a novel approach of exploiting scale-invariance property of the semantic segmentation model for self-supervised domain adaptation. Our algorithm is based on a reasonable assumption that, in general, regardless of the size of the object and stuff (given context) the semantic labeling should be unchanged. We show that this constraint is violated over the images of the target domain, and hence could be used to transfer labels in-between differently scaled patches. Specifically, we show that semantic segmentation model produces output with high entropy when presented with scaled-up patches of target domain, in comparison to when presented original size images. These scale-invariant examples are extracted from the most confident images of the target domain. Dynamic class specific entropy thresholding mechanism is presented to filter out unreliable pseudo-labels. Furthermore, we also incorporate the focal loss to tackle the problem of class imbalance in self-supervised learning. Extensive experiments have been performed, and results indicate that exploiting the scale-invariant labeling, we outperform existing self-supervised based state-of-the-art domain adaptation methods. Specifically, we achieve 1.3% and 3.8% of lead for GTA5 to Cityscapes and SYNTHIA to Cityscapes with VGG16-FCN8 baseline network.

Abstract (translated)

URL

https://arxiv.org/abs/2007.14449

PDF

https://arxiv.org/pdf/2007.14449.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot