Paper Reading AI Learner

L$^2$C -- Learning to Learn to Compress

2020-07-31 13:13:53
Nannan Zou, Honglei Zhang, Francesco Cricri, Hamed R. Tavakoli, Jani Lainema, Miska Hannuksela, Emre Aksu, Esa Rahtu

Abstract

In this paper we present an end-to-end meta-learned system for image compression. Traditional machine learning based approaches to image compression train one or more neural network for generalization performance. However, at inference time, the encoder or the latent tensor output by the encoder can be optimized for each test image. This optimization can be regarded as a form of adaptation or benevolent overfitting to the input content. In order to reduce the gap between training and inference conditions, we propose a new training paradigm for learned image compression, which is based on meta-learning. In a first phase, the neural networks are trained normally. In a second phase, the Model-Agnostic Meta-learning approach is adapted to the specific case of image compression, where the inner-loop performs latent tensor overfitting, and the outer loop updates both encoder and decoder neural networks based on the overfitting performance. Furthermore, after meta-learning, we propose to overfit and cluster the bias terms of the decoder on training image patches, so that at inference time the optimal content-specific bias terms can be selected at encoder-side. Finally, we propose a new probability model for lossless compression, which combines concepts from both multi-scale and super-resolution probability model approaches. We show the benefits of all our proposed ideas via carefully designed experiments.

Abstract (translated)

URL

https://arxiv.org/abs/2007.16054

PDF

https://arxiv.org/pdf/2007.16054.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot