Paper Reading AI Learner

Designing Neural Speaker Embeddings with Meta Learning

2020-07-31 17:47:36
Manoj Kumar, Tae Jin-Park, Somer Bishop, Shrikanth Narayanan

Abstract

Neural speaker embeddings trained using classification objectives have demonstrated state-of-the-art performance in multiple applications. Typically, such embeddings are trained on an out-of-domain corpus on a single task e.g., speaker classification, albeit with a large number of classes (speakers). In this work, we reformulate embedding training under the meta-learning paradigm. We redistribute the training corpus as an ensemble of multiple related speaker classification tasks, and learn a representation that generalizes better to unseen speakers. First, we develop an open source toolkit to train x-vectors that is matched in performance with pre-trained Kaldi models for speaker diarization and speaker verification applications. We find that different bottleneck layers in the architecture variedly favor different applications. Next, we use two meta-learning strategies, namely prototypical networks and relation networks, to improve over the x-vector embeddings. Our best performing model achieves a relative improvement of 12.37% and 7.11% in speaker error on the DIHARD II development corpus and the AMI meeting corpus, respectively. We analyze improvements across different domains in the DIHARD corpus. Notably, on the challenging child speech domain, we study the relation between child age and the diarization performance. Further, we show reductions in equal error rate for speaker verification on the SITW corpus (7.68%) and the VOiCES challenge corpus (8.78%). We observe that meta-learning particularly offers benefits in challenging acoustic conditions and recording setups encountered in these corpora. Our experiments illustrate the applicability of meta-learning as a generalized learning paradigm for training deep neural speaker embeddings.

Abstract (translated)

URL

https://arxiv.org/abs/2007.16196

PDF

https://arxiv.org/pdf/2007.16196.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot