Paper Reading AI Learner

Domain Adaptive Medical Image Segmentation via Adversarial Learning of Disease-Specific Spatial Patterns

2020-08-04 07:04:55
Hongwei Li, Timo Loehr, Anjany Sekuboyina, Jianguo Zhang, Benedikt Wiestler, Bjoern Menze

Abstract

In medical imaging, the heterogeneity of multi-centre data impedes the applicability of deep learning-based methods and results in significant performance degradation when applying models in an unseen data domain, e.g. a new centreor a new scanner. In this paper, we propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains without using any manual annotations from the new target domains, but by re-calibrating the networks on few images from the target domain. To achieve this, we enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information, thus to capture disease-specific spatial patterns in an adversarial optimization. The adaptation process needs continuous monitoring, however, as we cannot assume the presence of ground-truth masks for the target domain, we propose two new metrics to monitor the adaptation process, and strategies to train the segmentation algorithm in a stable fashion. We build upon well-established 2D and 3D architectures and perform extensive experiments on three cross-centre brain lesion segmentation tasks, involving multicentre public and in-house datasets. We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.

Abstract (translated)

URL

https://arxiv.org/abs/2001.09313

PDF

https://arxiv.org/pdf/2001.09313.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot