Paper Reading AI Learner

From Human Mesenchymal Stromal Cells to Osteosarcoma Cells Classification by Deep Learning

2020-08-04 22:23:58
Mario D'Acunto, Massimo Martinelli, Davide Moroni

Abstract

Early diagnosis of cancer often allows for a more vast choice of therapy opportunities. After a cancer diagnosis, staging provides essential information about the extent of disease in the body and the expected response to a particular treatment. The leading importance of classifying cancer patients at the early stage into high or low-risk groups has led many research teams, both from the biomedical and bioinformatics field, to study the application of Deep Learning (DL) methods. The ability of DL to detect critical features from complex datasets is a significant achievement in early diagnosis and cell cancer progression. In this paper, we focus the attention on osteosarcoma. Osteosarcoma is one of the primary malignant bone tumors which usually afflicts people in adolescence. Our contribution to the classification of osteosarcoma cells is made as follows: a DL approach is applied to discriminate human Mesenchymal Stromal Cells (MSCs) from osteosarcoma cells and to classify the different cell populations under investigation. Glass slides of differ-ent cell populations were cultured including MSCs, differentiated in healthy bone cells (osteoblasts) and osteosarcoma cells, both single cell populations or mixed. Images of such samples of isolated cells (single-type of mixed) are recorded with traditional optical microscopy. DL is then applied to identify and classify single cells. Proper data augmentation techniques and cross-fold validation are used to appreciate the capabilities of a convolutional neural network to address the cell detection and classification problem. Based on the results obtained on individual cells, and to the versatility and scalability of our DL approach, the next step will be its application to discriminate and classify healthy or cancer tissues to advance digital pathology.

Abstract (translated)

URL

https://arxiv.org/abs/2008.01864

PDF

https://arxiv.org/pdf/2008.01864.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot