Paper Reading AI Learner

Cascade Graph Neural Networks for RGB-D Salient Object Detection

2020-08-07 10:59:04
Ao Luo, Xin Li, Fan Yang, Zhicheng Jiao, Hong Cheng, Siwei Lyu


tract: In this paper, we study the problem of salient object detection (SOD) for RGB-D images using both color and depth information.A major technical challenge in performing salient object detection fromRGB-D images is how to fully leverage the two complementary data sources. Current works either simply distill prior knowledge from the corresponding depth map for handling the RGB-image or blindly fuse color and geometric information to generate the coarse depth-aware representations, hindering the performance of RGB-D saliency this http URL this work, we introduceCascade Graph Neural Networks(Cas-Gnn),a unified framework which is capable of comprehensively distilling and reasoning the mutual benefits between these two data sources through a set of cascade graphs, to learn powerful representations for RGB-D salient object detection. Cas-Gnn processes the two data sources individually and employs a novelCascade Graph Reasoning(CGR) module to learn powerful dense feature embeddings, from which the saliency map can be easily inferred. Contrast to the previous approaches, the explicitly modeling and reasoning of high-level relations between complementary data sources allows us to better overcome challenges such as occlusions and ambiguities. Extensive experiments demonstrate that Cas-Gnn achieves significantly better performance than all existing RGB-DSOD approaches on several widely-used benchmarks.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot