Paper Reading AI Learner

A Vision-Based Control Method for Autonomous Landing of Vertical Flight Aircraft On a Moving Platform Without Using GPS

2020-08-13 05:48:29
Bochan Lee, Vishnu Saj, Moble Benedict, Dileep Kalathil

Abstract

The paper discusses a novel vision-based estimation and control approach to enable fully autonomous tracking and landing of vertical take-off and landing (VTOL) capable unmanned aerial vehicles (UAVs) on moving platforms without relying on a GPS signal. A unique feature of the present method is that it accomplishes this task without tracking the landing pad itself; however, by utilizing a standardized visual cue installed normal to the landing pad and parallel to the pilot's/vehicle's line of sight. A computer vision system using a single monocular camera is developed to detect the visual cue and then accurately estimate the heading of the UAV and its relative distances in all three directions to the landing pad. Through comparison with a Vicon-based motion capture system, the capability of the present vision system to measure distances in real-time within an accuracy of less than a centimeter and heading within a degree with the right visual cue, is demonstrated. A gain-scheduled proportional integral derivative (PID) control system is integrated with the vision system and then implemented on a quad-rotor-UAV dynamic model in a realistic simulation program called Gazebo. Extensive simulations are conducted to demonstrate the ability of the controller to achieve robust tracking and landing on platforms moving in arbitrary trajectories. Repeated flight tests, using both stationary and moving platforms are successfully conducted with less than 5 centimeters of landing error.

Abstract (translated)

URL

https://arxiv.org/abs/2008.05699

PDF

https://arxiv.org/pdf/2008.05699.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot