Paper Reading AI Learner

Self-Sampling for Neural Point Cloud Consolidation

2020-08-14 17:16:02
Gal Metzer, Rana Hanocka, Raja Giryes, Daniel Cohen-Or

Abstract

In this paper, we introduce a deep learning technique for consolidating and sharp feature generation of point clouds using only the input point cloud itself. Rather than explicitly define a prior that describes typical shape characteristics (i.e., piecewise-smoothness), or a heuristic policy for generating novel sharp points, we opt to learn both using a neural network with shared-weights. Instead of relying on a large collection of manually annotated data, we use the self-supervision present within a single shape, i.e., self-prior, to train the network, and learn the underlying distribution of sharp features specific to the given input point cloud. By learning to map a low-curvature subset of the input point cloud to a disjoint high-curvature subset, the network formalizes the shape-specific characteristics and infers how to generate sharp points. During test time, the network is repeatedly fed a random subset of points from the input and displaces them to generate an arbitrarily large set of novel sharp feature points. The local shared weights are optimized over the entire shape, learning non-local statistics and exploiting the recurrence of local-scale geometries. We demonstrate the ability to generate coherent sets of sharp feature points on a variety of shapes, while eliminating outliers and noise.

Abstract (translated)

URL

https://arxiv.org/abs/2008.06471

PDF

https://arxiv.org/pdf/2008.06471.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot