Paper Reading AI Learner

S^3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization

2020-08-18 11:44:10
Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, Ji-Rong Wen

Abstract

Recently, significant progress has been made in sequential recommendation with deep learning. Existing neural sequential recommendation models usually rely on the item prediction loss to learn model parameters or data representations. However, the model trained with this loss is prone to suffer from data sparsity problem. Since it overemphasizes the final performance, the association or fusion between context data and sequence data has not been well captured and utilized for sequential recommendation. To tackle this problem, we propose the model S^3-Rec, which stands for Self-Supervised learning for Sequential Recommendation, based on the self-attentive neural architecture. The main idea of our approach is to utilize the intrinsic data correlation to derive self-supervision signals and enhance the data representations via pre-training methods for improving sequential recommendation. For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence by utilizing the mutual information maximization (MIM) principle. MIM provides a unified way to characterize the correlation between different types of data, which is particularly suitable in our scenario. Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods, especially when only limited training data is available. Besides, we extend our self-supervised learning method to other recommendation models, which also improve their performance.

Abstract (translated)

URL

https://arxiv.org/abs/2008.07873

PDF

https://arxiv.org/pdf/2008.07873.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot