Paper Reading AI Learner

Patient ADE Risk Prediction through Hierarchical Time-Aware Neural Network Using Claim Codes

2020-08-20 13:24:54
Jinhe Shi, Xiangyu Gao, Chenyu Ha, Yage Wang, Guodong Gao, Yi Chen

Abstract

Adverse drug events (ADEs) are a serious health problem that can be life-threatening. While a lot of studies have been performed on detect correlation between a drug and an AE, limited studies have been conducted on personalized ADE risk prediction. Among treatment alternatives, avoiding the drug that has high likelihood of causing severe AE can help physicians to provide safer treatment to patients. Existing work on personalized ADE risk prediction uses the information obtained in the current medical visit. However, on the other hand, medical history reveals each patient's unique characteristics and comprehensive medical information. The goal of this study is to assess personalized ADE risks that a target drug may induce on a target patient, based on patient medical history recorded in claims codes, which provide information about diagnosis, drugs taken, related medical supplies besides billing information. We developed a HTNNR model (Hierarchical Time-aware Neural Network for ADE Risk) that capture characteristics of claim codes and their relationship. The empirical evaluation show that the proposed HTNNR model substantially outperforms the comparison methods, especially for rare drugs.

Abstract (translated)

URL

https://arxiv.org/abs/2008.08957

PDF

https://arxiv.org/pdf/2008.08957.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot