Paper Reading AI Learner

RFNet: Riemannian Fusion Network for EEG-based Brain-Computer Interfaces

2020-08-19 18:56:49
Guangyi Zhang, Ali Etemad

Abstract

This paper presents the novel Riemannian Fusion Network (RFNet), a deep neural architecture for learning spatial and temporal information from Electroencephalogram (EEG) for a number of different EEG-based Brain Computer Interface (BCI) tasks and applications. The spatial information relies on Spatial Covariance Matrices (SCM) of multi-channel EEG, whose space form a Riemannian Manifold due to the Symmetric and Positive Definite structure. We exploit a Riemannian approach to map spatial information onto feature vectors in Euclidean space. The temporal information characterized by features based on differential entropy and logarithm power spectrum density is extracted from different windows through time. Our network then learns the temporal information by employing a deep long short-term memory network with a soft attention mechanism. The output of the attention mechanism is used as the temporal feature vector. To effectively fuse spatial and temporal information, we use an effective fusion strategy, which learns attention weights applied to embedding-specific features for decision making. We evaluate our proposed framework on four public datasets from three popular fields of BCI, notably emotion recognition, vigilance estimation, and motor imagery classification, containing various types of tasks such as binary classification, multi-class classification, and regression. RFNet approaches the state-of-the-art on one dataset (SEED) and outperforms other methods on the other three datasets (SEED-VIG, BCI-IV 2A, and BCI-IV 2B), setting new state-of-the-art values and showing the robustness of our framework in EEG representation learning.

Abstract (translated)

URL

https://arxiv.org/abs/2008.08633

PDF

https://arxiv.org/pdf/2008.08633.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot