Paper Reading AI Learner

How Have We Reacted To The COVID-19 Pandemic? Analyzing Changing Indian Emotions Through The Lens of Twitter

2020-08-20 15:39:05
Rajdeep Mukherjee, Sriyash Poddar, Atharva Naik, Soham Dasgupta

Abstract

Since its outbreak, the ongoing COVID-19 pandemic has caused unprecedented losses to human lives and economies around the world. As of 18th July 2020, the World Health Organization (WHO) has reported more than 13 million confirmed cases including close to 600,000 deaths across 216 countries and territories. Despite several government measures, India has gradually moved up the ranks to become the third worst-hit nation by the pandemic after the US and Brazil, thus causing widespread anxiety and fear among her citizens. As majority of the world's population continues to remain confined to their homes, more and more people have started relying on social media platforms such as Twitter for expressing their feelings and attitudes towards various aspects of the pandemic. With rising concerns of mental well-being, it becomes imperative to analyze the dynamics of public affect in order to anticipate any potential threats and take precautionary measures. Since affective states of human mind are more nuanced than meager binary sentiments, here we propose a deep learning-based system to identify people's emotions from their tweets. We achieve competitive results on two benchmark datasets for multi-label emotion classification. We then use our system to analyze the evolution of emotional responses among Indians as the pandemic continues to spread its wings. We also study the development of salient factors contributing towards the changes in attitudes over time. Finally, we discuss directions to further improve our work and hope that our analysis can aid in better public health monitoring.

Abstract (translated)

URL

https://arxiv.org/abs/2008.09035

PDF

https://arxiv.org/pdf/2008.09035.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot