Paper Reading AI Learner

Method to Classify Skin Lesions using Dermoscopic images

2020-08-21 10:58:33
Hemanth Nadipineni

Abstract

Skin cancer is the most common cancer in the existing world constituting one-third of the cancer cases. Benign skin cancers are not fatal, can be cured with proper medication. But it is not the same as the malignant skin cancers. In the case of malignant melanoma, in its peak stage, the maximum life expectancy is less than or equal to 5 years. But, it can be cured if detected in early stages. Though there are numerous clinical procedures, the accuracy of diagnosis falls between 49% to 81% and is time-consuming. So, dermoscopy has been brought into the picture. It helped in increasing the accuracy of diagnosis but could not demolish the error-prone behaviour. A quick and less error-prone solution is needed to diagnose this majorly growing skin cancer. This project deals with the usage of deep learning in skin lesion classification. In this project, an automated model for skin lesion classification using dermoscopic images has been developed with CNN(Convolution Neural Networks) as a training model. Convolution neural networks are known for capturing features of an image. So, they are preferred in analyzing medical images to find the characteristics that drive the model towards success. Techniques like data augmentation for tackling class imbalance, segmentation for focusing on the region of interest and 10-fold cross-validation to make the model robust have been brought into the picture. This project also includes usage of certain preprocessing techniques like brightening the images using piece-wise linear transformation function, grayscale conversion of the image, resize the image. This project throws a set of valuable insights on how the accuracy of the model hikes with the bringing of new input strategies, preprocessing techniques. The best accuracy this model could achieve is 0.886

Abstract (translated)

URL

https://arxiv.org/abs/2008.09418

PDF

https://arxiv.org/pdf/2008.09418.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot