Paper Reading AI Learner

Unpaired Learning of Deep Image Denoising

2020-08-31 16:22:40
Xiaohe Wu, Ming Liu, Yue Cao, Dongwei Ren, Wangmeng Zuo

Abstract

We investigate the task of learning blind image denoising networks from an unpaired set of clean and noisy images. Such problem setting generally is practical and valuable considering that it is feasible to collect unpaired noisy and clean images in most real-world applications. And we further assume that the noise can be signal dependent but is spatially uncorrelated. In order to facilitate unpaired learning of denoising network, this paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation. For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images. Due to the spatial independence of noise, we adopt a network by stacking 1x1 convolution layers to estimate the noise level map for each image. Both the D-BSN and image-specific noise model (CNN\_est) can be jointly trained via maximizing the constrained log-likelihood. Given the output of D-BSN and estimated noise level map, improved denoising performance can be further obtained based on the Bayes' rule. As for knowledge distillation, we first apply the learned noise models to clean images to synthesize a paired set of training images, and use the real noisy images and the corresponding denoising results in the first stage to form another paired set. Then, the ultimate denoising model can be distilled by training an existing denoising network using these two paired sets. Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs in terms of quantitative and qualitative evaluation.

Abstract (translated)

URL

https://arxiv.org/abs/2008.13711

PDF

https://arxiv.org/pdf/2008.13711.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot