Paper Reading AI Learner

Automatic Radish Wilt Detection Using Image Processing Based Techniques and Machine Learning Algorithm

2020-09-01 01:37:01
Asif Ashraf Patankar, Hyeonjoon Moon

Abstract

Image processing, computer vision, and pattern recognition have been playing a vital role in diverse agricultural applications, such as species detection, recognition, classification, identification, plant growth stages, plant disease detection, and many more. On the other hand, there is a growing need to capture high resolution images using unmanned aerial vehicles (UAV) and to develop better algorithms in order to find highly accurate and to the point results. In this paper, we propose a segmentation and extraction-based technique to detect fusarium wilt in radish crops. Recent wilt detection algorithms are either based on image processing techniques or conventional machine learning algorithms. However, our methodology is based on a hybrid algorithm, which combines image processing and machine learning. First, the crop image is divided into three segments, which include viz., healthy vegetation, ground and packing material. Based on the HSV decision tree algorithm, all the three segments are segregated from the image. Second, the extracted segments are summed together into an empty canvas of the same resolution as the image and one new image is produced. Third, this new image is compared with the original image, and a final noisy image, which contains traces of wilt is extracted. Finally, a k-means algorithm is applied to eliminate the noise and to extract the accurate wilt from it. Moreover, the extracted wilt is mapped on the original image using the contouring method. The proposed combination of algorithms detects the wilt appropriately, which surpasses the traditional practice of separately using the image processing techniques or machine learning.

Abstract (translated)

URL

https://arxiv.org/abs/2009.00173

PDF

https://arxiv.org/pdf/2009.00173.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot