Paper Reading AI Learner

Heatmap Regression via Randomized Rounding

2020-09-01 04:54:22
Baosheng Yu, Dacheng Tao

Abstract

Heatmap regression has become the mainstream methodology for deep learning-based semantic landmark localization, including in facial landmark localization and human pose estimation. Though heatmap regression is robust to large variations in pose, illumination, and occlusion in unconstrained settings, it usually suffers from a sub-pixel localization problem. Specifically, considering that the activation point indices in heatmaps are always integers, quantization error thus appears when using heatmaps as the representation of numerical coordinates. Previous methods to overcome the sub-pixel localization problem usually rely on high-resolution heatmaps. As a result, there is always a trade-off between achieving localization accuracy and computational cost, where the computational complexity of heatmap regression depends on the heatmap resolution in a quadratic manner. In this paper, we formally analyze the quantization error of vanilla heatmap regression and propose a simple yet effective quantization system to address the sub-pixel localization problem. The proposed quantization system induced by the randomized rounding operation 1) encodes the fractional part of numerical coordinates into the ground truth heatmap using a probabilistic approach during training; and 2) decodes the predicted numerical coordinates from a set of activation points during testing. We prove that the proposed quantization system for heatmap regression is unbiased and lossless. Experimental results on four popular facial landmark localization datasets (WFLW, 300W, COFW, and AFLW) demonstrate the effectiveness of the proposed method for efficient and accurate semantic landmark localization. Code is available at this http URL.

Abstract (translated)

URL

https://arxiv.org/abs/2009.00225

PDF

https://arxiv.org/pdf/2009.00225.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot