Paper Reading AI Learner

Evaluation of Deep Convolutional Generative Adversarial Networks for data augmentation of chest X-ray images

2020-09-02 16:43:55
Sagar Kora Venu

Abstract

Medical image datasets are usually imbalanced, due to the high costs of obtaining the data and time-consuming annotations. Training deep neural network models on such datasets to accurately classify the medical condition does not yield desired results and often over-fits the data on majority class samples. In order to address this issue, data augmentation is often performed on training data by position augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue to increase the dataset sizes. These augmentation techniques are not guaranteed to be advantageous in domains with limited data, especially medical image data, and could lead to further overfitting. In this work, we performed data augmentation on the Chest X-rays dataset through generative modeling (deep convolutional generative adversarial network) which creates artificial instances retaining similar characteristics to the original data and evaluation of the model resulted in Fréchet Distance of Inception (FID) score of 1.289.

Abstract (translated)

URL

https://arxiv.org/abs/2009.01181

PDF

https://arxiv.org/pdf/2009.01181.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot